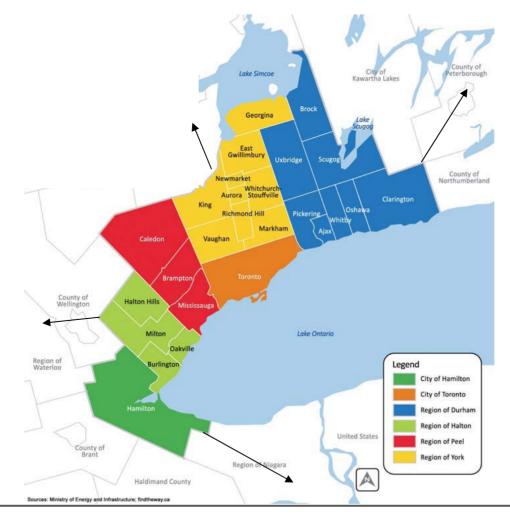
Streetcars: The Missing Link?

Jack J. Collins Vice President, Metrolinx

University of British Columbia September 29, 2010


Topics

- What is Metrolinx?
- Metrolinx Big Move Projects
- What is new with Toronto Streetcars?
- Resurgence of Streetcars in United States
- Things to keep in mind when considering Streetcar vs. Light Rail
- Getting it Right
- Questions?

A Tremendous Opportunity for Growth and Prosperity

27 municipalities

6 million people now, growing to 9 million by 2031


Metrolinx Vision and Mission

- Vision Working Together to Transform the Way the Region Moves
- Mission To Champion and Deliver Mobility Solutions for the Greater Toronto and Hamilton Area (GTHA)

The Big Move

In 2008 we produced a plan – The Big Move – a unanimously supported common vision

- 25-year integrated transportation plan
- \$50 billion capital need
- Plan vision
 - Double transit mode share
 - Transit lines would triple in length
 - Despite growth, commuting times would not increase
 - 75% of people living within 2 km of rapid transit
 - GHGs per capita decline significantly

Economic Benefits of The Big Move

Cost of congestion - \$6 billion, and could grow to \$15 billion in 2031

Jobs created building the projects	430,000
Expenditure within Ontario	71%
Employment Income	\$ 21 billion
GDP Growth	\$ 31 billion
Total Tax Revenues	\$ 15 billion

Metrolinx Priorities

- 1. Get the first five transit projects and Union-Pearson Air Rail Link built. Get these projects done and get them done well.
- 2. GO Transit good as it is, it needs to be even better. Make citizens an offer so good, they can't refuse. Expand and improve GO.
- 3. Develop investment strategy so we never have to play catch up again. Get best ideas on table, get debate going and citizens engaged. Make a recommendation by June 1, 2013.

Metrolinx Big 5 Projects Moving Forward

On June 14, 2010 Metrolinx ordered 182 Bombardier LRV's for \$770 million

Moving Forward – Sheppard LRT

Metrolinx Big 5 Projects Moving Forward

4 Tunnel Boring Machines

\$54 Million

Toronto-Based Lovat Inc.

Moving Forward – York VIVA

Moving Forward – Union-Pearson Air Rail Link

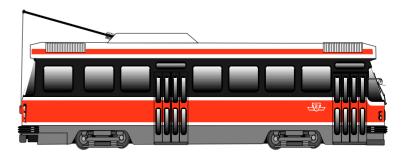
Other Major Projects Moving Forward

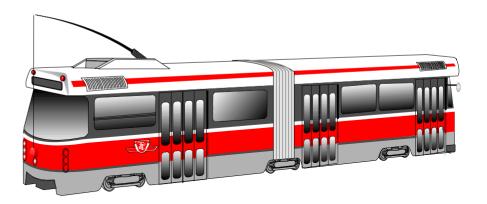
What's New With Toronto Streetcars?

CLRV 1978 - Present

What's New With Toronto Streetcars?

ALRV 1987 – Present





Page 16

Streetcar Facts-Current System

- Annual Streetcar
 Passenger-trips ~ 80 million
- Vehicles:
 - 196 CLRVs (Car 1 1977)
 - 52 ALRVs (Car 1 1987)
- Tracks:
 - 85 double track km
 - 89 special track work
- Service Routes:
 - 11 Routes total
 - 3 Semi-Right-of-Way

Toronto Streetcar Challenges

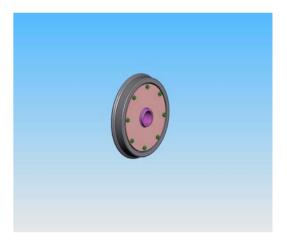
- Tight Loop and Curve Radius (11m vs. 25m)
- Grade Requirements (8% vs. 5%)
- Ground-borne Vibration
- Overhead Wire Capacity
- Buff Load (Collision Strength)
- Fare Collection

New Toronto Main Features

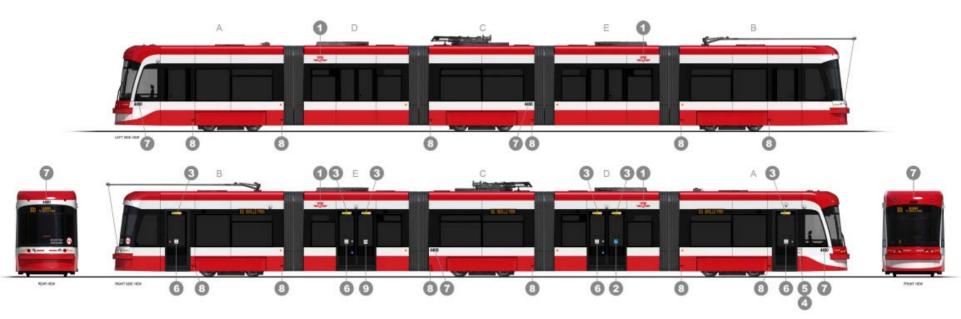
- 30.2m long (CLRV = 15.4m; ALRV = 23.2m)
- Single ended, 4 doors, air-conditioned
- ~ 250 passenger crush load (CLRV = 132; ALRV = 205)
- Customer input driven design
- Accessible 2 wheelchair positions, bike rack, audio/visual stc announcement
- Secure cameras, advance warning to motorists about impending stops, anti-microbial coating on stanchions
- Safe performance, crash energy management, outward visibility, meet SSP

New Toronto Main Features

- Environmental impact mitigation:
 - Regenerative braking
 - Equipment right-sizing
 - L.E.D. exterior lighting and intelligent auxiliary power control
 - Energy efficient glazing and insulation
 - Non-ozone depleting air conditioning freon
 - Aggressive weight and end-of-life recyclable material management programs
- Enclosed cab ticket vending & validation machines
- Go anywhere steep grades, tight curves, extended tunnel operation
- High reliability and maintainability
- Easy adaptation for Transit City vehicles



Super Resilient Wheels



An agency of the Government of Ontario

An agency of the Government of Ontario

Preliminary Interior & Seat Style and Fabric

Preliminary Interior Layout & Seat Style and Fabric

MISSOURI Project: St. Louis Loop Trolley Project (Urban Circulator) Sponsor: City of St. Louis Length: 2.2 miles (3.5 km) Planning Stage: Final Design Expected Cost: \$44,000,000 Cost per km: \$12,600,000 Grant Amount: \$24,990,000

NORTH CAROLINA

Project: Charlotte Streetcar Starter Project (Urban Circulator)

Sponsor: City of Charlotte Length: 1.5 miles (2.4 km) Planning Stage: Preliminary Engineering Expected Cost: \$37,000,000 Cost per km: \$15,400,000 Grant Amount: \$24,990,000

OHIO

Project: Cincinnati Streetcar Project (Urban Circulator) Sponsor: City of Cincinnati Length: 6 miles (9.6 km) Planning Stage: Preliminary Engineering Expected Cost: \$128,000,000 Cost per km: \$13,300,000 Grant Amount: \$24,990,000

TEXAS

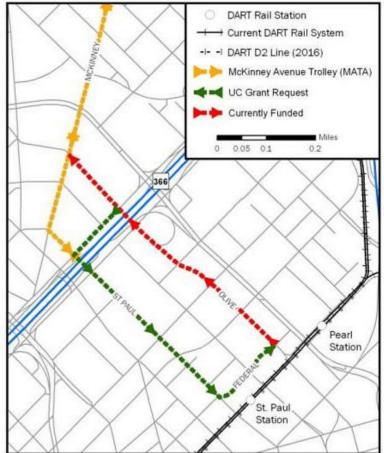
Project: Forth Worth Streetcar Loop (Urban Circulator)

Sponsor: The City of Fort Worth and the Fort Worth Transportation Authority

Length: 1.4 – 3.2 miles (2.2 – 5.1 km)

Planning Stage: Alternatives Analysis

Expected Cost: \$69,900,000 - \$138,300,000


Cost per km: \$27,000,000 - \$31,000,000

Grant Amount: \$24,990,000

TFXAS Project: Olive/St. Paul Street Loop (Urban Circulator) Sponsor: Dallas Area Rapid Transit Authority (DART Length: 0.65 miles (1 km) Planning Stage: Final Design Expected Cost: \$10,000,000 Cost per km: \$10,000,000 Grant Amount: \$4,900,000

OREGON Project: Portland Streetcar Loop (Urban Circulator) Sponsor: TriMet & City of Portland Length: 3.3 miles (5.3 km) Planning Stage: Design Expected Cost: \$128,273,000 Cost per km: \$24,156,000 Grant Amount: \$75,000,000 (federal)

Streetcar Project Trend in USA

- Urban Circulators that tie into other line haul light rail transit lines
- Portland Streetcar ties into MAX LRT
- Dallas Streetcar to tie into DART LRT
- Charlotte Streetcar to tie into Charlotte LRT

Modal Choices: Streetcars vs. Light Rail

Modern LRT in North America

Phoenix

Seattle

Houston

Edmonton

An agency of the Government of Ontario

Toronto Streetcar Debate

Typical Opinions on Toronto Streetcars:

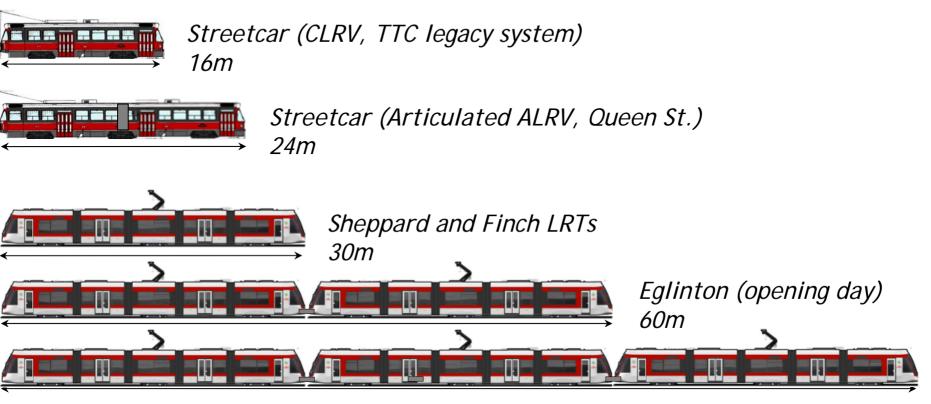
- Too slow, competes with traffic
- Don't like sharing road with streetcars
- Wait for a long time and then 2 or 3 arrive at the same time
- Better than diesel buses, better for air quality downtown
- Like them, they part of Toronto Urban fabric
- Too expensive

Streetcars versus LRT

Existing Streetcars	LRT
Shares lane with carsex. St. Clair, Spadina-Harbourfront	Never shares laneSometimes fully segregated (tunnel or elevated)
 Slow boarding Front door only (one door) Payment after entry, in queue High floor with steps 	Faster boarding • All-door boarding (four per car) • Payment before entry • Level boarding, no steps
No trains - max. length 24m	Trains of 1-3 cars – up to 90m
Unidirectional, needs loops	Bidirectional, no loops
Close stop spacing • Queen downtown: 180m • St. Clair: 250m	Longer stop spacing • Sheppard LRT: 450m • Eglinton tunnel: 850m • Typical North America: 1,000 - 2,000m

Lower line capacity

Medium-high line capacity


LRT versus Streetcars

- Streetcar service design is much slower
 - St. Clair: 13 km/h
 - Sheppard LRT: 22 km/h
 - Eglinton tunnel: 30-32 km/h
 - Subway: 32 km/h
- Streetcars are less reliable
 - Mixed traffic hurts reliability
 - Slow boarding also hurts reliability

Train Length

Eglinton (max) 90m Scarborough RT (opening day)

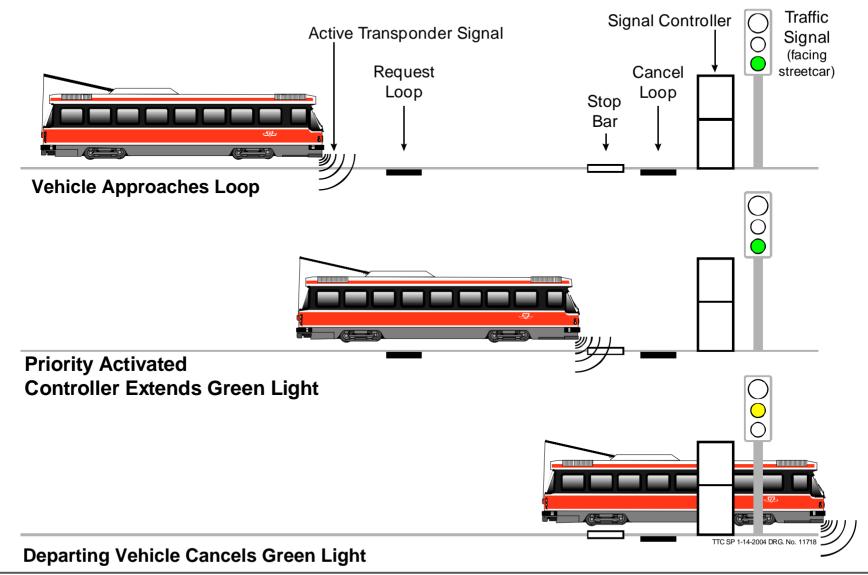
A Division of Metrolina

Sheppard Subway: 92m Yonge Subway: 140m

Factors That Affect LRT Capacity

"Transit line capacity" is product of:

- Train capacity
 - Each car carries 130-190 persons under normal conditions
 - A 3-car train can carry 480 persons
- Train frequency
 - Every 3 4 minutes on surface is the limit (15 - 20 trains per hour)
 - Every 2 minutes in tunnel or elevated guideway is the limit (up to 30 trains per hour)
- Three-car train every three minutes
 = 9,600 persons per hour per direction (pphpd)
 - Up to 14,500 pphpd for a line that is fully elevated / tunneled (e.g., Scarborough RT)
- For comparison,
 - Sheppard subway service is currently about 9,000 pphpd
 - Sheppard could be expanded to 20,000 pphpd
 - Yonge subway service is currently about 30,000 pphpd


Other Capacity Factors-Best Practice

- Double ended LRVs (no loops at end of line to turn vehicles around increases travel times and efficiencies)
- Ability to accommodate 3 LRV cars in one train consist (increased capacity with minimal additional operating cost)
- Traffic signal priority (TTC working closely with traffic engineers to provide a rolling wave of green signals to the extent possible)

Signal Priority - Green Light Extension

Light Rail Cost 2008 CAD

Metrolinx LRT projects

Sheppard East LRT	\$ 57,000,000 / km
Finch LRT	\$ 58,000,000 / km
Eglinton Crosstown	\$214,000,000 / km
Scarborough RT LRT conversion & extension	\$158,000,000 / km

Other Reference Projects

VTA, San Jose

\$ 56,000,000 / km

All costs in C \$2008. Costs include line and vehicles, but exclude maintenance yards.

Eglinton project is 65-75% tunnelled. Scarborough RT project is 100% grade separated, including tunnels and elevated sections

Streetcar Project Cost

t. Louis Loop (Urban Circulator-3.5 km)	\$ 12,600,000 / km
Charlotte Streetcar (Urban Circulator-2.4 km)	\$ 15,400,000 / km
Cincinnati Streetcar (Urban Circulator-9.6 km)	\$ 13,300,000 / km
Fort Worth Streetcar (Urban Circulator-2.2-5.1 km)	
Dallas Olive/St. Paul Loop (Urban Circulator-1.0 km)	
Portland, OR (Streetcar Loop-5.3 km)	\$ 24,156,000 / km

Canadian Reference Projects actual CAD

Toronto St. Clair Streetcar (6.8 km) \$ 15,600,000 / km*

* St. Clair Project does not include cost of streetcars, part of existing fleet

.....

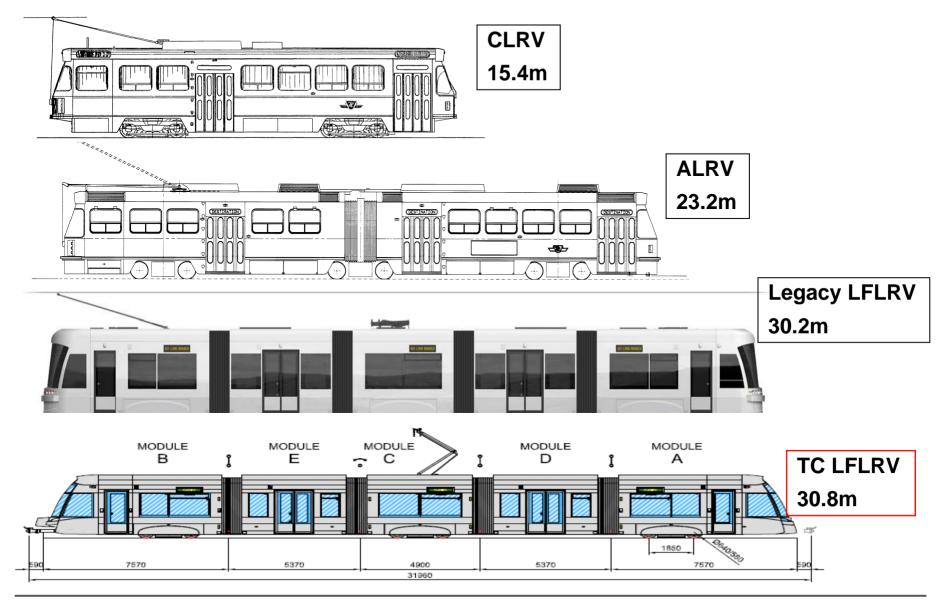
GETTING IT RIGHT

- Mode, capacity, speed, cost, urban fit, these are all important considerations
- Rail transit is a fixed investment that should last for decades with proper maintenance
- Today's workshop is a important step
- Get the facts....Deliberate on the mode choice and new technology
- Get it right for future generations!

Downtown Circulator?

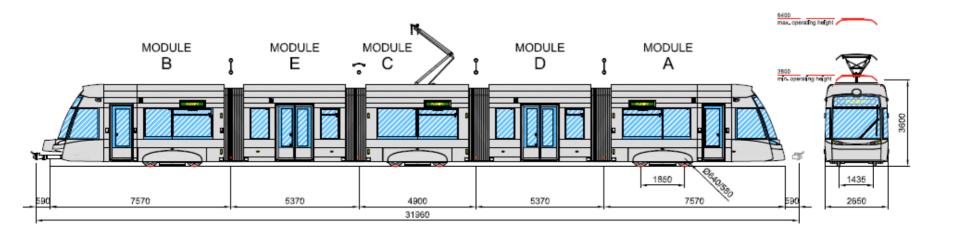
An agoncy of the Government of Ontario

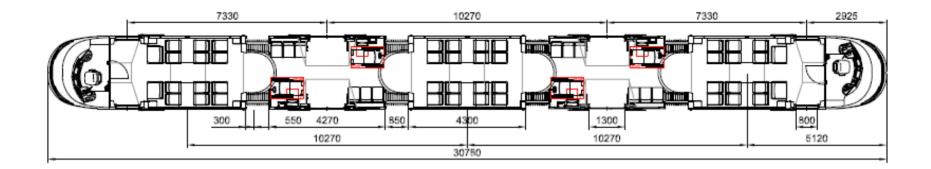
Other Capacity Factors-Best Practice


TTC Legacy LFLRV Delivery Schedule

Year End	Delivery	Running Total
2011 (Aug/Sept/Dec)	3 Prototype Vehicles	3
2012	1	4
2013	27	31
2014	36	67
2015	36	103
2016	36	139
2017	36	175
2018	29	204

Dates are subject to Change





An agency of the Government of Ontario

An agency of the Government of Ontario